A Tabu Search Evolutionary Algorithm for Solving Constraint Satisfaction Problems

نویسندگان

  • Bart G. W. Craenen
  • Ben Paechter
چکیده

The paper introduces a hybrid Tabu Search-Evolutionary Algorithm for solving the constraint satisfaction problem, called STLEA. Extensive experimental fine-tuning of parameters of the algorithm was performed to optimise the performance of the algorithm on a commonly used test-set. The performance of the STLEA was then compared to the best known evolutionary algorithm and benchmark deterministic and non-deterministic algorithms. The comparison shows that the STLEA improves on the performance of the best known evolutionary algorithm but can not achieve the efficiency of the deterministic algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Conflict Tabu Search Evolutionary Algorithm for Solving Constraint Satisfaction Problems

This paper introduces a hybrid Tabu Search Evolutionary Algorithm for solving the binary constraint satisfaction problem, called CTLEA. A continuation of an earlier introduced algorithm, called the STLEA, the CTLEA replaces the earlier compound label tabu list with a conflict tabu list. Extensive experimental fine-tuning of parameters was performed to optimise the performance of the algorithm o...

متن کامل

Tabu Search for Maximal Constraint Satisfaction Problems

This paper presents a Tabu Search (TS) algorithm for solving maximal constraint satisfaction problems. The algorithm was tested on a wide range of random instances (up to 500 variables and 30 values). Comparisons were carried out with a min-connicts+random-walk (MCRW) algorithm. Empirical evidence shows that the TS algorithm nds results which are better than that of the MCRW algorithm.the TS al...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

A Memetic Algorithm with Bucket Elimination for the Still Life Problem

Bucket elimination (BE) is an exact technique based on variable elimination, commonly used for solving constraint satisfaction problems. We consider the hybridization of BE with evolutionary algorithms endowed with tabu search. The resulting memetic algorithm (MA) uses BE as a mechanism for recombining solutions, providing the best possible child from the parental set. This MA is applied to the...

متن کامل

Solving DisCSPs with Penalty Driven Search

We introduce the Distributed, Penalty-driven Local search algorithm (DisPeL) for solving Distributed Constraint Satisfaction Problems. DisPeL is a novel distributed iterative improvement algorithm which escapes local optima by the use of both temporary and incremental penalties and a tabu-like no-good store. We justify the use of these features and provide empirical results which demonstrate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006